
the cost attributed to code-level technical debt
and how Clean as You Code avoids it

2023

https://www.sonarsource.com

executive summary
Issues in code accumulate over time and can contribute to code-level technical
debt. Technical debt leads to lower product quality, increased security risks, reduced
developer velocity, efficiency, and morale. Based on an examination of more than
200 projects within a span of 12 months, our research was able to estimate the cost
attributed to accumulated code-level technical debt. The study also proposes an
alternate way to avoid these costs upfront.

The cost attributable to code-level technical debt over 5 years for a typical project size of
1M Lines of Code (LoC) is estimated at 27,500 developer hours or $1.5M.

This cost is vast when compounded with an organization’s rapidly growing number of
projects. Organizations can avoid the cost of bad code with an alternative Clean as You
Code approach.

Estimating the Cost Attributable to Code-Level Technical Debt and How to Avoid It 02 / 13

Research[1] estimates that developers spend 33% of their time dealing with technical debt, equating
to productivity loss and a significant cost to companies annually. Over and above this direct developer
cost, the negative impact of technical debt can result in lower product quality, increased security risks,
worsening business results, and reduced developer velocity, efficiency, and morale.

Companies choose to tackle technical debt in different ways. One approach is to do nothing or defer
action until a later point. This approach, if continued, could eventually require significant refactoring or a
complete rewrite of the software. The danger here is that debt accumulates, compounding complexity
and potentially exacerbating the impact of code-level issues on the software. As development teams
churn, addressing historical issues created by someone else can also lead to greater difficulty, complexity,
and frustration.

The methodology proposed by Sonar presents an alternative approach. The Clean as You Code method
prevents bad code from reaching production in the first place. It involves focusing on addressing issues
in the code that is added or changed so that this code is free from all issues. When all new code is clean,
the overall technical debt does not increase, and in fact, progressively reduces over time.

We conducted experiments to estimate the cost attributed to code-level technical debt and provide a
quantified directional value of the approach.

This report outlines the process and results.

[1] The Developer Coefficient by Stripe

the methodology

https://stripe.com/files/reports/the-developer-coefficient.pdf
https://survey.stackoverflow.co/2023/#work-salary

Estimating the Cost Attributable to Code-Level Technical Debt and How to Avoid It 03 / 13

what is code-level technical debt?
Code-level technical debt refers to the accumulation of unresolved issues during software development.
These issues, intentionally or unintentionally left unaddressed, result in future rework and gradually build
up over time.

Technical debt generally presents itself differently for every product and company – making it challenging
to quantify and compare. It is often a result of excessive software complexity, design flaws, or weak
architecture. However, code level technical debt has specific quantifiable characteristics that present
opportunities for analysis.

Acknowledging that coding issues are an inevitable part of development, we must recognize that the
accumulation of these unresolved issues worsens the impact of code-level technical debt. Addressing
these issues becomes more complex and burdensome as time passes, adversely affecting the overall
software quality and developer velocity.

C
25.5%

C++
25.2%

JavaScript
10.8%

PHP
6.9%

XML
6.9%

Others
8.5%

Java
3.6%

HTML
8.8%

Python
3.9%

SAMPLED PROJECTS CATEGORIZED BY LANGUAGE

Estimating the Cost Attributable to Code-Level Technical Debt and How to Avoid It

our research
We created a quantitative model consisting of a sample set of over 200[2] projects of varying sizes and
programming languages to examine the value of employing the Clean as You Code methodology. This
distribution enabled us to gather a comprehensive dataset for analyzing the volume and type of issues
created over a defined period.

The data extracted totaled approximately 11M Lines of Code (LoC) and covered a variety of programming
languages over 12 months. Of the projects analyzed, 27% contained multiple languages, and the average
size of projects analyzed was approximately 500K LoC. The chart below illustrates the breakdown by
primary language.

04 / 13

[2] A list of projects analyzed is available here

https://github.com/SonarSource/CaYC-research
https://survey.stackoverflow.co/2023/#work-salary

92.8% Other Issues
issues such as code smells that may impact
the maintainability and readability of code

7.2% Critical Issues
issues such as bugs and vulnerabilities that
can impact code security and quality

1,172,384
SonarQube Issues

84,853
Critical Issues

Estimating the Cost Attributable to Code-Level Technical Debt and How to Avoid It 05 / 13

analysis of newly created issues
The extracted dataset was analyzed using SonarQube (a self-managed code analysis offering from Sonar),
which delivered a view of newly created issues per month per project for 12 months.

While it is impractical to describe a typical average project (since it can vary for every organization), the
data presented in this report can serve as a guide to estimate the cost associated with accumulated
technical debt based on the number of projects and typical project size.

Analysis of the data portrayed a split between issues classified as “critical” and “others.” Critical issues
block forward progress and manifest as bugs or vulnerabilities. The category of issues labeled as “others”
represents problems in the code that require attention and, if left unattended, may potentially lead to
maintainability issues or serious flaws downstream.

150,000

100,000

50,000

200,000

250,000

Time (Months)

Vo
lu

m
e

of
 A

ll
Is

su
es

M1 M6M3 M8M2 M7M4 M9 M11M5 M10 M12

TOTAL VOLUME OF NEW ISSUES CREATED PER MONTH
Across 200+ Projects/11M LoC

Other Issues Critical Issues

Estimating the Cost Attributable to Code-Level Technical Debt and How to Avoid It

Every month, developers contribute to code-level technical debt by creating new issues. The volume of new issues
created per month varied over the 12 months across all the analyzed projects. We assume that the project-specific
cadence of developer effort and the subsequent merging of new code influence this.

06 / 13

EXAMPLES OF SONAR RULES AND ASSOCIATED EFFORT

Rule Message Type Effort Severity Create Date

scala:S1764 Current one of the identical sub-expressions on both
sides this operator

BUG 2 min MAJOR 2022-06-01

csharpsquid:S5542 Use secure mode and padding scheme VULNERABILITY 20 min CRITICAL 2022 - 03-05

c:S984 Remove this use of dynamic memory BUG 1 hr CRITICAL 2022-03-08

java:S1228 Add a ‘package-info.java’ file to document the ‘test’
package

CODE SMELL 20 min MINOR 2022-01-22

php:S1106 Move this open curly brace to the beginning of next line CODE SMELL 1 min MINOR 2022-07-16

java:S2658 Remove this use of dynamic class loading VULNERABILITY 45 min CRITICAL 2022-02-17

javascript:S930 This function expects 1 argument, but 2 were provided BUG 10 min CRITICAL 2022-08-30

csharpsquid:S3267 Loops should be simplified with “LINQ” expressions CODE SMELL 5 mins MINOR 2022-09-25

Estimating the Cost Attributable to Code-Level Technical Debt and How to Avoid It 07 / 13

estimating the effort required to fix each issue
created

Sonar provides a publicly available library of rules to identify code issues. Each rule has an associated
“Effort” or remediation time, calculated through a combination of issue classification and language[3].
Based on this data, we can compute the estimated time to fix the flagged issues. Through this analysis,
we computed the approximate time to fix all reported issues to build the total estimated effort (in
minutes) required to address the newly introduced issues.

[3] Adding Coding Rules

https://docs.sonarqube.org/latest/extension-guide/adding-coding-rules/

30,000

20,000

10,000

40,000

Time (Months)

R
em

ed
ia

tio
n

H
ou

rs

M1 M6M3 M8M2 M7M4 M9 M11M5 M10 M12

TOTAL VOLUME OF NEW ISSUES CREATED PER MONTH
Across 200+ Projects/11M LoC

Other Issues Hours Critical Issues

Estimating the Cost Attributable to Code-Level Technical Debt and How to Avoid It 08 / 13

calculating the effort to fix newly created issues

Taking Month 6 as an example—across all the projects surveyed—there were 174k newly created issues, which
would take 32k hours to remediate or fix.

REMEDIATION HOURS BY LOC
All Issues

5,000

0

10,000

15,000

2.
8

k

12
1

k

36
 k

34
1

k

14
 k

22
3

k

77
 k

61
7

k

2.
7

M

5.
9

k

16
6

k

55
 k

43
6

k

24
 k

26
7

k

10
5

k

74
8

k

6.
3

M

Ef
fo

rt
 (

H
ou

rs
 o

f
R

em
ed

ia
tio

n)

Project Size (Lines of Code)

Effort (Hours Remediation) Trend Line for Remediation Hours by LoC

5,500 Hours of Effort

1
M

Estimating the Cost Attributable to Code-Level Technical Debt and How to Avoid It 09 / 13

volume of new issues created by the size of repo
project

Several factors can impact the volume of new issues created, and we mapped the volume of new issues
(and associated remediation time) by the project size based on Lines of Code.

The following plot of “effort” or remediation time versus lines of code shows that the size of the project
largely affects the number of new issues created: the larger the project, the more new issues.

To correlate data across various size projects into relatable insights, we assumed a typical project size of 1M
LoC. Based on this assumption, we computed the expected remediation time for all newly created issues over 12
months. The result revealed an estimated 5,500 hours of effort or remediation time required to address all the
newly created issues within the 12-month period.

5-YEAR CUMULATIVE COST ATTRIBUTABLE TO ALL NEWLY CREATED ISSUES
1M LoC Project

Y1

$500 K

$1.0 M

$1.5 M

Y3

Time (Years)

Co
st

 (
$

U
SD

)

Y2 Y4 Y5

1 YEAR 5 YEARS

5,500 Dev Hours = $306,000 27,500 Dev Hours = $1,500,000

Estimating the Cost Attributable to Code-Level Technical Debt and How to Avoid It 10 / 13

calculating the financial cost
The hours of effort, or developer time, can be converted into an estimated financial cost attributable to
the accumulated code-level technical debt.

Assuming the cost of a developer for 1 year (US, fully loaded) at $100,000[4] and the typical 1,800 work
hours per year, the cost per hour is $55.56.

Assuming that issues are created at the same rate the cumulative attributable cost would amount to
$1.5M over 5 years.

[4] Stackoverflow survey

https://survey.stackoverflow.co/2023/#work-salary

5-YEAR CUMULATIVE COST ATTRIBUTABLE TO ALL NEWLY CREATED ISSUES
1M LoC Project

Y1

$500 K

$1.0 M

$1.5 M

Y3

Co
st

 (
$

U
SD

)

Y2 Y4 Y5

Time (Years)

THE TRUE IMPACT?

Estimating the Cost Attributable to Code-Level Technical Debt and How to Avoid It 11 / 13

the actual impact may be far more significant
In this analysis, we estimated the cost associated with fixing newly introduced coding issues. The cost of
every unfixed coding issue progressively increases over time. We estimate that issues left for more than
90 days begin to accrue “interest” as the difficulty in remediating them increases.

 The Clean as You Code methodology identifies and guides developers to fix these issues as they
code before they reach production. This proactive approach avoids the increased time and monetary
implications that may arise if issues require addressing as part of a future code refactoring effort or are
never addressed at all.

Fixing issues as they arise is pragmatic and efficient. Several additional factors contribute to higher after-
the-fact remediation costs, or “interest” such as:

 + Issues discovered later in production disrupt business

 + Longer development time to implement new features due to
unmaintainable software

 + Loss of business agility because bad code is harder to change

 + Developer churn results in getting to grips with errors created by
others

conclusion
The data extracted from over 200 projects demonstrates that many new issues are created and
introduced into code on a regular basis. Unaddressed, these issues accumulate and contribute toward
code-level technical debt. The estimated cost attributed to technical debt for a project of 1M LoC
was $306K per year or 5,500 developer hours spent on remediation. Over the 5-year lifecycle of an
application, these costs could reach $1.5M or the equivalent of 27,500 developer hours.

Given that a developer spends 33% of development time fixing issues in code, the cost to refactor a large
portion of an application could be more than 2-3x the cost to fix issues upfront as they occur.

In this study, we focused on attributing the cost of fixing coding issues by examining real-world projects
over a defined period and using actual issue remediation times from SonarQube. The actual costs may
be far higher when considering the impact issues left unaddressed may have. Debt continues to rise,
and addressing issues becomes more complex and burdensome as time passes, impacting the overall
software quality. It equates to a significant amount of developer effort and associated costs.

Employing a Clean as You Code methodology allows organizations and their developers to avoid these
costs while overcoming the negative long-term impact of technical debt.

Clean as You Code
The essential approach to Clean Code

what is Clean as You Code?
Clean as You Code from Sonar is vital for achieving a Clean Code state - when
your codebase has reached a problem-free state and is fit for development
and fit for production. This approach enables developers and organizations to
optimize the quality of their codebase by solely focusing on code that’s added
or changed. This simple yet powerful methodology progressively improves the
overall quality of the entire codebase with minimal cost and effort.

why is Clean as You Code important?
When teams dedicate less time to addressing old issues or reworking newly
created issues, they can accelerate new features, avoid unnecessary rework
costs, and foster talent growth and retention. Enabling developers to use Clean
Code practices as they code helps achieve these results. Developers can own
the quality of their new code while simultaneously improving the existing code
they touch in the process. As time passes, old issues get corrected without
adding any new ones, all while work on new projects continues with forward
momentum. That means teams are delivering what matters most to the
business and they get to keep things interesting.

The Clean as You Code methodology can be leveraged across your organization
regardless of software maturity, level of developer experience, and internal
complexity. By creating and operating on consistent standards with
recommended quality gates, the entire development organization can keep its
future code clean, regardless of language or platform, project age or size, or
existing code complexity. This approach ensures that the future code does not
introduce critical security issues, or blocker bugs, and has low technical debt.

what you achieve with Clean as You Code
THE STATE OF CLEAN CODE
Systematically achieve the state of Clean Code, making all code fit for
development and fit for production while reducing the burden of technical debt.

DEVELOPER OWNERSHIP OF THE CODEBASE
Enable developers to take full ownership of the quality of the code they write
with a forward-thinking mentality and leave behind the stress of addressing
legacy issues all at once.

ORGANIZATION-WIDE STANDARD FOR CLEAN CODE
The only expectation across the organization is that new code – added or
changed – sticks to Clean Code standards and does not introduce new issues.
The approach is simple, effective, and quickly adopted by all.

REDUCED EFFORT ON REWORK
Slowly remediate issues and improve quality when touching old code to make
new edits. It’s an effortless way to yield the best results.

HOW TO IMPLEMENT CLEAN AS YOU CODE

What is Clean as You Code?
Clean as You Code from Sonar is a methodology that progressively improves
the quality of the entire codebase with minimal cost and effort. This
approach is essential for achieving a Clean Code state - when your codebase
has reached a problem-free state. This approach enables developers and
organizations to optimize the quality of their codebase by focusing solely on
added or changed code.

Steps to get started today
1. Commit to Clean Code: Set an organization-wide standard that new code ships to

production only if it’s clean. Sonar helps you achieve this.

2. Leverage Sonar:

A. Install Sonar’s free IDE plugin, SonarLint, to help find and fix issues from the
moment developers write the code.

© 2008-2023, SonarSource S.A, Switzerland. All content is copyright protected. SONAR, SONARSOURCE, SONARLINT, SONARQUBE and SONARCLOUD are trademarks of SonarSource
SA. All other trademarks and copyrights are the property of their respective owners. All rights are expressly reserved.

B. Install and easily integrate SonarQube (self-managed) or SonarCloud (SaaS) into
the CI/CD workflow to find and fix issues while performing continuous inspections
of projects.

3. Set up your projects for Clean as You Code:

A.	Define Your New Code: Your new code definition should be long enough to fix
issues before they fall into the “legacy” period, but short enough to enforce fixing
them before they accumulate and relevant to your release cycle.

B. Establish Clean as You Code-compliant Quality Gates focused on new code -
added or changed - on all projects.

4. Respect the Quality Gate: You can implement this in a way that matches your process.
For example, by preventing the merge of dirty code with a branch protection policy based
on the Quality Gate, by failing CI pipelines, or by conditionally choosing not to execute CD
pipelines based on the Quality Gate result.

Clean as You Code continuously reinforces Clean Code best practices embedded within
the development workflow so that developers can clearly understand issues, deliver with
expediency, and avoid complications.

Start reaching your Clean Code goals today with Clean As You Code.

You can use Connected Mode for SonarLint to synchronize Quality Profiles and
inspect security issues found by SonarQube and SonarCloud

New Code = Changes from a previous version, a reference branch, or number
of days (maximum of 90 days)

resources

LEARN MORE LEARN MORE LEARN MORE

Clean as You Code
Info Hub

What is Clean as
You Code?

Learn How to Implement
Clean as You Code

https://www.sonarsource.com/solutions/our-unique-approach/
https://www.sonarsource.com/resources/solution-briefs/clean-as-you-code/
https://www.sonarsource.com/resources/solution-briefs/how-to-implement-clean-as-you-code/

Sonar’s industry-leading solution enables developers and
organizations to achieve the state of Clean Code. Its open
source and commercial solutions – SonarLint, SonarCloud and
SonarQube – support 30+ programming languages, frameworks
and infrastructure technology. Trusted by more than 400,000
organizations globally, Sonar is considered integral to delivering
better software.

www.sonarsource.com

© 2008-2023, SonarSource S.A, Switzerland. All content is copyright protected. SONAR, SONARSOURCE, SONARLINT, SONARQUBE and
SONARCLOUD are trademarks of SonarSource SA. All other trademarks and copyrights are the property of their respective owners. All rights
are expressly reserved.

https://www.sonarsource.com
https://www.sonarsource.com/
http://www.sonarsource.com

